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Abstract

The objective of this paper is to present a nu-
mericaf technique based on a combked approach
of using a “quasi-dynamic”, a “dynamic” and an
asymptotic approach for the analysis of non-uniform
rnicrostrip transmission lines and discontinuities us-
ing the grounded dielectric slab Green’s Functions.

The regions of validity of several qnss.i-dynarnic
and asymptotic approximations have been compared
and determined in terms of the required accuracy
and the microstrip physical parameters. Finally,
numerical examples have been solved and checked
with available and data and measurement in order
to check the accuracy of thk new technique.

1 Introduction

This paper describes an Electric Field Integral Equation
Formulation (EFIEF) for the dynamic characterization of
non-uniform microstrip transmission lines and discontinu-
ities. In the dynamic approach, the green’s functions G,(p)

and G2 (p) are Sommerfeld type integrals that can be eval-

uated only numerically. The crucial element to a numeri-

cal advantage of the EFIEF therefore, lies in the efficient

computation of the green’s functions, particularly in the
analysis of electrically large structures. In this paper, a
quasi dynamic approximation [1] has been used for the near

field and an asymptotic steepest descent approximation for

the far field calculations. The regions of validity of several

quasi-dynamic and asymptotic approximations have been

compared and determined in terms of the microstrip phys-
ical parameters and the required accuracy.
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2 Moment Method Formulation

For the most general planar structures, the current distrib-

ution is a two dimensional current with both longitudinal

and transversal flows [1]. For most transmission lines like
structures however, the transversal current is negligible and
thus the current may be assumed to flow in the axial direc-
tion only [1]. Such an assumption leads to a considerably

more efficient moment method solution as it substantially
reduces the generalized impedance matrix size. In this paL-
per, a longitudinal current flow has been assumed. For the
single microstrip line, the transversal component of the lon-

gitudinal flow has an analytical form that depends on (~)

[1, 2, 3]. For a multi-conductor line (Fig. 1.) however, the

transversal current distribution on each of the lines can no

longer be approximated by a square root or a constant dis-

tribution due to the edge effects. The transversal distribu-

tion also depends on the location and number of the excited

lines. In this paper, the transversal current distribution is
obtained by solving the equivalent 2D problem involving

the charge distribution [4,5]. The equivalence of the charge

and current distributions for the uniform, infinite length,
multi-conductor transmission line has been shown in [4]1.

2.1 Numerical Evaluation of The Greern’s
Functions

In the dynamic approach, the Sommerfeld type Green’s

functions of the problem are evaluated exactly. The poles of
the integrands have to be evaluated very accurately [6,7]. In

this paper, we use a combined ( iterative, Newton-Raphson

) search, guaranteed to converge to any desired accuracy Ito

determine the location of these poles. In this procedure,
the error after the Nth iteration is bound by

(11)

Once the number and locations of the poles are determined,

the Green’s functions of the ,tkrostrip can then be eas-
ily numerically calculated using a strait forward guassimr
quadrature. The detailed prw.xdiire has been outlined iin
[1,8].
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2.1.1 The Quasi-Dynamic Approximation

In this paper, the quasi-dynamic approximations Glg and

G2~ are defined as

GM(P) = Jilio G,(p) (2)

G2,(P) = Jiso Gz(p) (3)

and are as !ziven in 111. Next, we define the region of valid-. .
ity of the quasi-dynamic approximation Gig by - - “
quasi-dynamic radius (Rq) such that

defining a

Rq (4)

where error is any specified error tolerance.

2.1.2 The Asymptotic Approximation

In a similar fashion, the asymptotic approximations GIC(P)

and G2. (p) for Gl(p) and G2(p) are defined as

Gl=(p) = , ~mm G,(p) (5)

G2=(p) = , l&mm GJp) (6)

and though they are defined in the limiting sense ss p -+ co,

they are generally valid to an excellent accuracy for p greater

than a fraction of a free space wavelength for most prac-

tical microstrip circuits [9]. In this paper, the asymptotic

solution is obtained by deforming the path of integration

in G1 (p) and G2(p) to the path of steepest descent and us-
ing the first order approximation for the Hankel functions.

Next, we define the region of validity of the asymptotic

solution by an asymptotic radius R. such that:

Gi(p) – Gia(p)

Gi(p)
> error for all p z R. (7)

Thus, in order to efficiently evaluate the moment method

generalized impedance matrix, we first compute the quasi-
dYnamic radius Rq and the asymptotic radius Ra subject

to a specified error tolerance. The Green’s functions Cl(p)

and G2(p) are then evaluated using the quasi-dynamic solu-
tion for p < Rq , the dynamic solution for Rq < p ~ Rc,

and finally the asymptotic solution for p > Ra. This is
particularly useful in analyzing electrically large structures

as most of the computations occur in the region (p 2 Ra).

Once the numerical apparatus for computing the Green’s

of the problem has been laid out, the computation of the

current distribution on the metallic structures is obtained
using a standard Moment Method technique [1]. The ex-

traction of the frequency dependent network parameters of
arbitrary geometries has been fully described in [1]. Fi-

nally in order to validate this new approach, several ex-
amples have been solved and compared with available data
and measurement. In this paper, we present the following

example.

8 Computation of The [S] Param-
eters of a Tapered Two Con-
ductor Transmission Line

In this example we solve for the [S] parameters of a tapered
two conductor transmission line. The line geometrical and

electrical data are shown in Fig. 2. A 4-port network is

then defined by 4 reference planes 1.6 cms apart and sym-

metrically located from the port ends. The 3D frequency

dependent [S] parameters are then extracted from the cur-

rent distribution as described in [1]. In order to check the
results, we approximate e the line by a cascade of four uni-

form lines L1, L2, L3, and L4. The lines have different
separations S1, S2, S3, and S4 (Fig. 2b). The length of
each section is one fourth of the total length of the line

(0.4 cm). The 2D frequency dependent [S] parameters of
the of the line are then computed from the individual [S]

parameters of each section using a 2D EFIE formulation [4

> 5, 10] and standard network theory. The 3D and 2D S

parameters have been computed at several frequencies. At

3, 4, and 5 Ghz, they are given in t~bles (1.1-1.3). It can
be seen from these tables that the agreement between the

3D and 2D results is reasonable.

4 Conclusion

A new Dynamic approach, based on using near and far

field approximations for the sommerfeld microstrip green’s

functions in the analysis of non-uniform microstrip trans-

mission lines and discontinuity ies has been presented. The

accuracy of these approximations can be set to any desired
value. This is particularly useful in the analysis of electri-

cally large circuits as it offers a significant reduction in the

computational effort wit bout sacrificing accuracy. A lSO, in

this new approach, a substantial reduction in the moment
method matrix size has been achieved by a proper choice
of the basis functions for the current distribution on multi-
conductor transmission lines. Finally in order to check the
accuracy of this new technique, several numerical exam-

ples have been solved and checked with available data and

experiment.
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